M ay 2 00 7 BERNSTEIN POLYNOMIALS , BERGMAN KERNELS AND TORIC KÄHLER VARIETIES
نویسنده
چکیده
We show that the classical Bernstein polynomials BN (f)(x) on the interval [0, 1] (and their higher dimensional generalizations on the simplex Σm ⊂ R) may be expressed in terms of Bergman kernels for the Fubini-Study metric on CP: BN (f)(x) is obtained by applying the Toeplitz operator f(N−1Dθ) to the Fubini-Study Bergman kernels. The expression generalizes immediately to any toric Kähler variety and Delzant polytope, and gives a novel definition of Bernstein ‘polynomials’ BhN (f) relative to any toric Kähler variety. They uniformly approximate any continuous function f on the associated polytope P with all the properties of classical Bernstein polynomials. Upon integration over the polytope one obtains a complete asymptotic expansion for the Dedekind-Riemann sums 1 N ∑ α∈NP f( α N ) of f ∈ C(R), of a type similar to the Euler-MacLaurin formulae.
منابع مشابه
Szasz Analytic Functions and Noncompact Toric Varieties
We relate the classical approximations SN (f)(x) of O.Szasz to the Bergman kernel of the Bargmann-Fock space H(C, e |z| 2 dm(z)). This relation is the analogue for compact toric varieties of the relation between Bernstein polynomials and Bergman kernels on compact toric Kähler varieties of S. Zelditch. The relation is then used to generalize the Szasz analytic functions to any infinite volume t...
متن کاملKernels and Toric Kähler Varieties
We show that the classical Bernstein polynomials BN (f)(x) on the interval [0, 1] (and their higher dimensional generalizations on the simplex Σm ⊂ R) may be expressed in terms of Bergman kernels for the Fubini-Study metric on CP: BN (f)(x) is obtained by applying the Toeplitz operator f(N−1Dθ) to the Fubini-Study Bergman kernels. The expression generalizes immediately to any toric Kähler varie...
متن کاملBernstein Polynomials, Bergman Kernels and Toric Kähler Varieties
We show that the classical Bernstein polynomials BN(f)(x) on the interval [0, 1] (and their higher dimensional generalizations on the simplex Σm ⊂ R) may be expressed in terms of Bergman kernels for the Fubini-Study metric on CP: BN(f)(x) is obtained by applying the Toeplitz operator f(N−1Dθ) to the Fubini-Study Bergman kernels. The expression generalizes immediately to any toric Kähler variety...
متن کاملTest Configurations, Large Deviations and Geodesic Rays on Toric Varieties
This article contains a detailed study in the case of a toric variety of the geodesic rays φt defined by Phong-Sturm corresponding to test configurations T in the sense of Donaldson. We show that the ‘Bergman approximations’ φk(t, z) of Phong-Sturm converge in C to the geodesic ray φt, and that the geodesic ray itself is C 1,1 and no better. In particular, the Kähler metrics ωt = ω0 + i∂∂̄φt ass...
متن کاملThe Bergman Kernel on Toric Kähler Manifolds
Let (L, h) → (X,ω) be a compact toric polarized Kähler manifold of complex dimension n. For each k ∈ N, the fibre-wise Hermitian metric h on L induces a natural inner product on the vector space C∞(X,Lk) of smooth global sections of L by integration with respect to the volume form ω n n! . The orthogonal projection Pk : C∞(X,Lk) → H(X,L) onto the space H(X,L) of global holomorphic sections of L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009